The Kepler Triangle, Phi and Pi

A “Kepler triangle” is a right triangle having edge lengths in a geometric progression, in which the common ratio is √ϕ, where ϕ represents the golden ratio.
Well, let’s construct a square with side length √ϕ that inscribes a Kepler triangle, that is, a right triangle with edges 1 : √ϕ : ϕ (or approximately 1 : 1.272 : 1.618), as shown in the picture. Draw then the circumcircle of the Kepler triangle (highlighted in orange in the picture) whose diameter is the hypotenuse of the triangle.
Then, the perimeters of the square (4√ϕ≈5.0884) and the circle (πϕ≈5.083) coincide up to an error less than 0.1%. From this, we can get the approximation coincidence π≈4/√ϕ

Kepler triangle, phi and pi

Sprouts Game

All possible ways a game of “Sprouts” with two initial dots can evolve. Sprouts is a paper-and-pencil game that can be enjoyed simply by both adults and children.

sprout game

Read more.