Math Ambigram

(by Peter Rowlett)
Solve this equation for x. Then rotate 180° and solve for x again.
The equation works either ways as 𝑥, 1, 8 and the unusual 5 have rotational symmetry. The same is true of +, =, and the horizontal line in a fraction.

rotatable equation
© Peter Rowlett

Transform a Ball with 2 Holes into a CD

Topology is a fascinating branch of mathematics that describes the properties of an object that remain unchanged under “smooth” deformations. If we imagine objects to be made of clay, a smooth deformation is any deformation that does not require the discontinuous action of a tear or the punching of a hole, such as bending, squeezing and shaping. These deformations are called “continuous deformations“. Continue reading “Transform a Ball with 2 Holes into a CD”

Is seeing believing? This book will prove the contrary

We really enjoy communicate the mysteries behind the science of perception in a simple and clear manner with the use of instructive images.

We live in a “reallusive” world… Illusions are not totally unreal, because we feel them as they were real. Reality is also a kind of ‘illusion’. The outside world is mediated through our sense organs: vision, hearing, taste, touch and smell. All what we perceive and feel are just REPRESENTATIONS of reality, not the reality itself.

Children have a different way of looking at the world. So, writing and illustrating optical illusion books for kids is not an easy task, because they are less fooled by visual illusions than adults. This is due to the fact that brain’s capacity to consider the CONTEXT of visual scenes, and not just focus on SINGLE PARTS of scenes, develops very slowly.

Optical Illusions” will make you question: “is seeing believing?”… The brain is an amazing thing, but it doesn’t always get things right when it comes to sight. My book is here to explain why, with astounding images, baffling puzzles, and simple reveals. Continue reading “Is seeing believing? This book will prove the contrary”

“Illusion d’Optique” Magic Playing Cards

For Art, Math and Magic Lovers!

Order now your exclusive “Illusion d’Optique” playing card deck designed by puzzle master Gianni A. Sarcone!

Packaging printed with optical ink and placed in a protective transparent plastic case.

Inside, you’ll find 54 eye-popping original optical illusions. Watch closely as colors change, shapes transform and static, printed ink seems to come alive. Sarcone has included updated versions of classic illusions, plus innovative new concepts he developed after years of study. “Illusion d’Optique” is not only a beautiful deck, but it also serves as fascinating proof that seeing is not necessarily believing.

A world without problems is an illusion, so is a world without solutions.” – G. Sarcone

Gianni A. Sarcone is a visual artist and author from Italy with over 30 years’ experience in the fields of visual creativity, recreational mathematics and educational games. Much of his art blurs the line between cognitive sciences and communication. As Gianni puts it, his work is intended to “encourage people to look beyond what seems obvious and to open their mind to new emotions and dimensions.

Proof Copy

Intriguing Geometric Dissections

Any two polygons with equal area can be dissected into a finite number of pieces to form each other. One of the most interesting dissection or geometric equidecomposition puzzles is that discovered by Harry Lindgren in 1951 (see Fig. 2 further below). As you know, in this kind of puzzles, the geometric invariant is the area, since when a polygon is cut and its pieces are distributed differently, the overall area doesn’t change.

Lindgren was the first to discover how to cut a dodecagon into a minimal number of pieces that could pave a square, when rearranged differently. His solution is very elegant, he first built a regular Euclidean pavement by cutting a dodecagon as shown in fig. 1.a, then arranging the four pieces symmetrically on the plane (fig 1.b). The tessellation achieved with these pieces corresponds, by superposition, to a regular paving of squares. The example in fig. 2 shows how the puzzle appears once finished.

dodecagon fig. 1

Continue reading “Intriguing Geometric Dissections”