|
|
|
Shortcuts |
|
|
 |
 |
•••
|
|
•••
|
 |
 |
•••
|
|
•••
|
 |
 |
•••
|
Smile!
"The best way to catch a train
in time is to manage to miss the previous one"
"Le meilleur moyen de prendre un train à l'heure, c'est de s'arranger
pour rater le précédent"
-- Marcel Achard
Math
Gems
cosα ≈ 1
- α2/2
(when α is small)
|
|
•••
|
 |
 |
•••
|
|
•••
|
 |
|
|
 |
Previous
Puzzles of the Month + Solutions
|
|
|
Back to Puzzle-of-the-Month
page | Home  |
Puzzle
# 126
|
|
A
troublesome sequence
A number sequence is a set of numbers arranged in an orderly fashion,
such that the preceding and following numbers are completely specified. Sometimes
it is very easy to find in a series what number comes next, but usually it is
not! Here is a tough example: try to replace the ‘X’ in
the following sequence with the most appropriate number:
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, X, ...
Can you guess the secret rule and the magic of the sequence
above?
Difficulty
level:   ,
general math knowledge.
Category:
Number series.
Keywords:
number sequence, progression, series.
Related
puzzles:
- The
Parrot sequence,
- Pacioli puzzle.
- Una
successione miracolosa
In matematica, una successione o progressione numerica è un
elenco ordinato di numeri, detti ‘termini’.
A volte è molto facile dedurre da un termine
qualunque di una specifica successione il termine
successivo, ma non sempre! Ecco un esempio difficile:
provate a sostituire la "X" nella successione
qui sotto con il numero più appropriato.
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, X, ...
Riuscite a indovinare la regola segreta (la 'ragione')
di questa successione? Che cosa la rende così speciale
e magica?
Parole
chiave: numeri, successione, termini.
Suggerisci un'altra
soluzione Chiudi
- Une
suite mirobolante
Une
suite est en mathématique une suite de nombres
disposés de façon ordonnée,
de telle sorte que chaque terme de la suite permet
de déduire le suivant. Parfois, il est très
facile de trouver la 'raison' d’une suite,
et parfois, non! Voici un exemple difficile: essayez
de remplacer le «X» dans la série
suivante avec le nombre le plus approprié.
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, X, ...
Pouvez-vous deviner la règle secrète
(la 'raison') de la séquence ci-dessus? Qu’est-ce
qui la rend si particulière, voire magique?
Mots
clés: nombres, suite, progression.
Propose une
autre solution Fermer
|
Source
of the puzzle:
© G. Sarcone. You
cannot reproduce any part of this page without prior written
permission. |
|
 |
|
The
answer is X = 6.
Remove
every alternating (second) number of this special
sequence, what do
you have left? 1, 1, 2, 1, 3, 2,
4, 1, 5, 3, 6, 2, 7, 4, 8... Exactly the same sequence!
Which means if you remove every second term again,
you get the same sequence. Over and over.
This sequence has in fact the property to contain
itself as a proper subsequence, infinitely. This
is why it
is called ‘fractal sequence’ or ‘sandwich
sequence’.
Vivisection
of the sequence
Curiously enough, there are actually infinite positive
integer subsequences embedded in this fractal sequence
(see table further below):
Subsequence a: Starts from position n =
1 and increments by 1 while moving 2 numbers ahead
in the sequence.
Subsequence b: Starts from position n =
2 and increments by 1 while moving 22=4
numbers ahead in the sequence.
Subsequence c: Starts from position n =
4 and increments by 1 while moving 23=8
numbers ahead in the sequence.
Subsequence d: Starts from position n =
8 and increments by 1 while moving 24=16
numbers ahead in the sequence.
Etc...
As you can see in the table below, each integer subsequence
starts on the 2m-1 position
and jumps ahead in the fractal sequence by 2m (with m≥0)
positions and increments by 1.
n |
k |
a |
b |
c |
d |
e |
f |
1 |
1 |
1 |
|
|
|
|
|
2 |
1 |
|
1 |
|
|
|
|
3 |
2 |
2 |
|
|
|
|
|
4 |
1 |
|
|
1 |
|
|
|
5 |
3 |
3 |
|
|
|
|
|
6 |
2 |
|
2 |
|
|
|
|
7 |
4 |
4 |
|
|
|
|
|
8 |
1 |
|
|
|
1 |
|
|
9 |
5 |
5 |
|
|
|
|
|
10 |
3 |
|
3 |
|
|
|
|
11 |
6 |
6 |
|
|
|
|
|
12 |
2 |
|
|
2 |
|
|
|
13 |
7 |
7 |
|
|
|
|
|
14 |
4 |
|
4 |
|
|
|
|
15 |
8 |
8 |
|
|
|
|
|
16 |
1 |
|
|
|
|
1 |
|
17 |
9 |
9 |
|
|
|
|
|
18 |
5 |
|
5 |
|
|
|
|
19 |
10 |
10 |
|
|
|
|
|
20 |
3 |
|
|
3 |
|
|
|
21 |
11 |
11 |
|
|
|
|
|
22 |
6 |
|
6 |
|
|
|
|
23 |
12 |
12 |
|
|
|
|
|
24 |
2 |
|
|
|
2 |
|
|
25 |
13 |
13 |
|
|
|
|
|
26 |
7 |
|
7 |
|
|
|
|
27 |
14 |
14 |
|
|
|
|
|
28 |
4 |
|
|
4 |
|
|
|
29 |
15 |
15 |
|
|
|
|
|
30 |
8 |
|
8 |
|
|
|
|
31 |
16 |
16 |
|
|
|
|
|
32 |
1 |
|
|
|
|
|
1 |
33 |
17 |
17 |
|
|
|
|
|
34 |
9 |
|
9 |
|
|
|
|
35 |
18 |
18 |
|
|
|
|
|
36 |
5 |
|
|
5 |
|
|
|
37 |
19 |
19 |
|
|
|
|
|
38 |
10 |
|
10 |
|
|
|
|
39 |
20 |
20 |
|
|
|
|
|
40 |
3 |
|
|
|
3 |
|
|
41 |
21 |
21 |
|
|
|
|
|
42 |
11 |
|
11 |
|
|
|
|
43 |
22 |
22 |
|
|
|
|
|
44 |
6 |
|
|
6 |
|
|
|
45 |
23 |
23 |
|
|
|
|
|
46 |
12 |
|
12 |
|
|
|
|
47 |
24 |
24 |
|
|
|
|
|
48 |
2 |
|
|
|
|
2 |
|
49 |
25 |
25 |
|
|
|
|
|
50 |
13 |
|
13 |
|
|
|
|
51 |
26 |
26 |
|
|
|
|
|
52 |
7 |
|
|
7 |
|
|
|
53 |
27 |
27 |
|
|
|
|
|
54 |
14 |
|
14 |
|
|
|
|
55 |
28 |
28 |
|
|
|
|
|
56 |
4 |
|
|
|
4 |
|
|
57 |
29 |
29 |
|
|
|
|
|
58 |
15 |
|
15 |
|
|
|
|
59 |
30 |
30 |
|
|
|
|
|
60 |
8 |
|
|
8 |
|
|
|
|
The
5 Winners of the Puzzle of the Month are:
Larry Bickford, USA - Emeline Luirard,
France - Denzil
Gumbo, Zimbabwe - Jakub
Nogly, Poland - Sarah
Farooq, Pakistan 
Congratulations!
|
|
 |
Math
fact behind the puzzle
|
Properties
of the sequence
This particular fractal sequence is obtained from powers
of 2. In fact, every number of the sequence occurs
at 2m(2k - 1) position,
with m≥0.
For instance, the number 6 occurs at the following
positions (n):
n1 = 20(2x6 -
1) = 11
n2 = 21(2x6 -
1) = 22
n3 = 22(2x6 -
1) = 44
Etc...
Here
is a simple program in "bc" (available
on Unix, Linux, and Cygwin)
sent by Larry Bickford that generates the sequence:
With i < 50,
we obtain the following output:
1 1 2 1 3 2 4 1 5 3 6 2 7 4 8 1 9 5 10 3 11 6 12 2
13 7 14 4\
15 8 16 1 17 9 18 5 19 10 20 3 21 11 22 6 23 12 24
2 25 13
|
© 2011 G.
Sarcone, www.archimedes-lab.org
You can re-use content from Archimedes’ Lab
on the ONLY condition that you provide credit to the
authors (© G.
Sarcone and/or M.-J.
Waeber) and a link back to our site. You CANNOT
reproduce the content of this page for commercial
purposes.
|
You're
encouraged to expand and/or improve this article. Send
your comments, feedback or suggestions to Gianni
A. Sarcone. Thanks! |
|
 |
|
|
|