Any two polygons with equal area can be dissected into a finite number of pieces to form each other. Below are two neat minimal dissections of a dodecagon into a square.

## Math-Magic Vanishing Space

Inspired from the astrological tables, here is a new puzzle of my creation designed according to the ‘Golden Number Rules’, which is reflected in the proportion of each single piece of the game. Thanks to the balanced dimensions of its pieces, this puzzle acquires some intriguing magical properties!

This “math-magical” puzzle is composed of a tray in which the pieces are assembled.

## Sum of Infinite Power Series

Have a look at the two distinct sums of series of powers below.

Same procedure, different result accuracy levels… Can you guess what went wrong in the operation of fig. 2?

## How to ‘magically’ untie a shoelace double knot

**Topology** is a fascinating branch of mathematics that describes the properties of an object that remain unchanged under continuous “smooth” deformations. Actually, many 3D puzzles are based on topological principles and understanding some very basic principles may help you analyze whether a puzzle is possible or not.

Puzzle-Meister **G. Sarcone** created this amusing everyday-life topological puzzle to help children to easily take their shoes off.

As you know, the standard shoelace knot is designed for quick release and easily comes untied when either of the working ends is pulled. Thus, most people think that tying a shoelace into a double knot is an effective method of making the knot “permanent”. **But is it true?** Continue reading “How to ‘magically’ untie a shoelace double knot”

## Rowboat Dilemma

A rowboat is floating in a harbor, and a stubborn donkey pulls by mean of a long rope through a pulley the boat toward the shore. When the donkey has moved 1 meter, how far has the boat moved:

**a)** exactly 1 meter,

**b)** more than 1 meter,

**c)** less than 1 meter?