# Archimedes Laboratory Project™ Puzzles & Mental Activities that Enhance Critical and Creative Thinking Skills

HomePuzzle ArchiveThe Author

SUNDAY PUZZLE #56
 Visually prove that if 3 equal circles mutually intersect one another in an arbitrary point P, then the circle passing through their other three pairwise points of intersection (A, B, and C respectively) is congruent to the original 3 circles. Prouvez visuellement que si trois cercles égaux se coupent mutuellement en un seul point P quelconque, alors le cercle passant par leurs trois autres points d'intersection (A, B, et C, respectivement) est congruent à ces 3 cercles. Dimostra in modo visivo che se 3 cerchi uguali si intersecano reciprocamente in un sol punto arbitrario P, allora il cerchio che passa per i loro altri tre punti di intersezione (rispettivamente A, B e C) è congruente ai 3 cerchi originali. You can comment and discuss this puzzle on our FaceBook or Blogger web page. › Click to show/hide the solution

Text and images by Gianni A. Sarcone
Labels: SUNDAY PUZZLE, puzzles to solve, recreational mathematics, circumcircle
You can use the material shown on this page for educational purpose only as long as you credit us [© G. Sarcone, www.archimedes-lab.org] and link back to archimedes-lab.org